Simply it is automatic Air exchange system for indoor air quality.
ERV is the energy recovery process of exchanging the energy contained in normally exhausted building or space air and using it to treat (precondition) the incoming outdoor ventilation air in residential and commercial HVAC systems. During the warmer seasons, the system pre-cools and dehumidifies while humidifying and pre-heating in the cooler seasons. The benefit of using energy recovery is the ability to meet the ASHRAE ventilation & energy standards, while improving indoor air quality and reducing total HVAC equipment capacity.
This system will allow for the indoor environment to maintain a relative humidity of 40% to 50%. This range can be maintained under essentially all conditions. The only energy penalty is the power needed for the blower to overcome the pressure drop in the system. An energy recovery ventilator is a type of air-to-air heat exchanger that not only transfers sensible heat but also latent heat Because both temperature and moisture are transferred, ERVs can be considered total enthalpic devices.
Throughout the cooling season, the system works to cool and dehumidify the incoming, outside air. This is accomplished by the system taking the rejected heat and sending it into the exhaust airstream. Subsequently, this air cools the condenser coil at a lower temperature than if the rejected heat had not entered the exhaust airstream. During the heating seasons, the system works in reverse. Instead of discharging the heat into the exhaust airstream, the system draws heat from the exhaust airstream in order to pre-heat the incoming air. At this stage, the air passes through a primary unit and then into a space. With this type of system, it is normal, during the cooling seasons, for the exhaust air to be cooler than the ventilation air and, during the heating seasons, warmer than the ventilation air. It is for this reason the system works very efficiently and effectively. The coefficient of performance (COP) will increase as the conditions become more extreme (i.e., more hot and humid for cooling and colder for heating)
Copyright © 2018 Clean Air - All Rights Reserved.